Studi Komputasi Daidzein, Galangin, Genistein, Naringenin sebagai Inhibitor Korosi Besi dengan Metode DFT dan Membandingkannya dengan Luteolin

Authors

  • Yeni Stiadi
  • Muhammad Ilham
  • Emriadi

DOI:

https://doi.org/10.25077/jku.11.1.12-18.2022

Keywords:

Corrosion inhibition; Organic inhibitor; DFT

Abstract

Corrosion inhibitors of daidzein, galangin, genistein, naringenin and luteolin compounds have been studied using the Density Functional Theory (DFT) method with the basis set B3LYP/6-31G using the Gaussian program. To prevent corrosion, organic inhibitors are needed which are safe for the environment. Therefore, researchers are looking for other organic inhibitors that have the potential to prevent corrosion. The calculated quantum chemical parameters are EHOMO, ELUMO, gap energy (∆E), ionization potential (I), electron affinity (A), electronegativity (X), hardness (ɳ), softness (σ), electrophilicity (ω), nucleophilicity (ε), mulliken charge density, back-donation energy (Eb-d), electron transfer (∆N), adsorption energy (Eads), and bond energy (Ebinding). Theoretical calculations show that naringenin is a good inhibitor compared to other compounds so that it can be used as an alternative organic inhibitor to replace luteolin. In this research, naringenin is a compound that has the potential as an inhibitor as seen from the structure and parameter calculations that have been carried out, so that naringenin can be used as an organic inhibitor to replace luteolin. The theoretical order of increasing inhibition is naringenin > genistein > galangin > daidzein. This theoretical study will greatly contribute to the experimental research of organic inhibitors because the theoretical increase in inhibition is already known.

References

Belghiti, M. E.: Applied Surface Science Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Hydrazine Derivatives in Phosphoric Acid on Mild Steel Surface. Applied Surface Science 2019, 491, 707-722.

Guo, L.; Safi, ZS.; Kaya, S.; Shi, W.; Tüzün, B.; Altunay, N.; Kaya, C.: Anticorrosive Effects of Some Thiophene Derivatives Against the Corrosion of Iron. A Computational Study 2018, 6, 155.

Bagga, M. K.; Gadi, R.; Yadav, O. S.; Kumar, R.; Chopra, R.; Singh, G.: Investigation of Phytochemical Components and Corrosion Inhibition Property of Ficus Racemosa Stem Extract on Mild Steel in H2SO4 Medium. Journal of Environmental Chemical Engineering 2016, 4, 699-707.

Phuonga, N. V.; Park, M. S.; Yima, C. D.; You, B. S.; Moon, S.: Corrosion Protection Utilizing Ag Layer on Cu Coated AZ31 Mg Alloy. Corrosion Science 2018.

Huong, D. G.; Duong, T.; Nam, P. C.: Effect of the Structure and Temperature on Corrosion Inhibition of Thiourea Derivatives in 1,0 M HCL Solution. Corrosion Science 2019.

Nurudeen; Odewunmia; Umorena, S. A.; Gasema, Z. M.; Ganiyub, S. A.; Muhammad, G.: L-Citrulline: An Active Corrosion Inhibitor Component of Watermelon Rind Extract for Mild Steel in HCl Medium. Journal of the Taiwan Institute of Chemical Engineers 2015, 1-9.

Kamal, C.; Sethuraman, M. G.: Spirulina Platensis - A Novel Green Inhibitor for Acid Corrosion of Mild Steel. Arabian Journal of Chemistry 2012, 5, 155-161.

Obi-Egbedi, N. O.; Obot, I. B.; Umoren, S.; Ebenso, E.: Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Effisiency and Molecular Structure of Some Phenanthroline Derivatives On. International Journal of Electrochemical Science 2011, 6, 5649–5675.

Mehmeti, V. V.; Berisha, A. R.: Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using and 2-Mercaptonicotinic Acid-An Experimental and Theoretical Study. Fronetiers in Chemistry 2017, 5, 1–12.

Amoko, J.; Akinyele, O.; Dare, S.; Oyeneyin, O. E.: Synthesis Characterization and Computational Studies on the Corrosion Inhibitive Potentials of (e)-3-(2-p-Tolyldiazenyl) -1-Nitrosonaphthalen-2-Ol. Leonardo Journal of Sciences 2019, 29-48.

Zarrok, H.; Assouag, M.; Zarrouk, A.; Oudda, H.; Hallaoui, A.; Touzani, R.; Allali, M.; Hammouti, B.; El Hezzat, M.; Bouachrine, M.: Guantum Chemical Study on the Corrosion Inhibition of Some Bipyrazoles. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6, 1853–1860.

Ramadhani, F; Emriadi; Syukri.: Theoretical Study of Xanthone Derivative Corrosion Inhibitors Using Density Functional Theory (DFT). Jurnal Kimia Valensi 2020, 6, 97–105.

Obayes, H. R.; Alwan, G. H.; Hameed, A.; Alobaidy, M. J.; Al-Amiery, A. A; Kadhum, A. A. H.: Guantum Chemical Assessment of Benzimidazole Derivatives as Corrosion Inhibitors. Chemical Central Journal 2014, 8, 2–9.

Anadebe, V. C.; Onukwuli, O. D.; Omotioma, M.; Okafor, N.A.: Experimental, Theoretical Modeling and Optimization of Inhibition Efficiency of Pigeon Pea Leaf Extract as Anti-Corrosion Agent of Mild Steel in Acid Environment. Materials Chemistry and Physics 2019, 233, 120–132.

Ikpi, M. E.; Abeng, F. E.: Theoretical Study on the Corrosion Inhibitor Potential of Moxifloxacin for API 5L X-52 Steel in Acidic Environment. IOP Conference Series: Earth and Environmental Science 2018, 173, 1-7.

Guo, L. A; Zaki Safi; Savas Kaya; Wei Shi; Burak Tuzun; Nail Altunay; Cemai Kaya. Anti corrosive of some tiophene derivatives againts the corrosion of iron : A Computational study. Frontiers in Chemistry 2017, 6, 155

Khaled, K. F.; Amin, M. A.: Computational and Electrochemical Investigation for Corrosion Inhibition of Nickel in Molar Nitric Acid by Piperidines. Journal Application of Electrochemistry 2008, 38, 1609-1629.

Wulandari, Annisa.; Afrizal.; Emriadi.; Imelda.; E. Mai.: Studi Komputasi Terhadap Struktur, Sifat Antioksidan, Toksisitas dan Skor Obat dari Scopoletin dan Turunannya. Chempublish Journal, 2020, 5, 1, 77-92.

Obot, I. B.; Macdonald, D. D.; Gasem, Z. M.: Density Functional Theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science 2015,99, 1-30.

Udowo, V. M.: Computational Studies of the Corrosion Inhibition Potentials of Quercetin and Coumarin. Arc Org Inorg Chem 2018, 2, 2.

Khaled, K. F.: Molecular Simulation, Quantum Chemical Calculations and Electrochemical Studies for Inhibition of Mild Steel by Triazoles. Electrochimica Acta 2008, 53, 3484–3492.

Obot, I.B.; Obi-Egbedi, N.O.: Anti-Corrosive Properties of Xanthone on Mild Steel Corrosion in Sulphuric Acid: Experimental and Theoretical Investigations. Current Applied Physics, 2011, 11, 382-392.

Xia, Shuwei.; Qiu, Meng.; Yu, Liangmin.; Liu, Fuguo.; Zhao, Haizhou.: Molecular Dynamics and Density Functional Theory Study on Relationship Between Structure of Imidazoline Derivatives and Inhibition Performance. Corrosion Science, 2008, 50, 2021–2029.

Alibakhshi, E.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B.; Mahdavian, M.; Motamedi, M.: Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution : Experimental, molecular dynamics, Monte Carlo and Guantum mechanics study. Journal of Molecular Liquids 2018, 255, 185-198.

Marni, Lidia Gusfi.; Emriadi.; Syukri.; Imelda.: Study on corrosion inhibition of khellin and visnagin compounds in iron using DFT (density functional theory) method. Jurnal Litbang Industri 2019, 2, 9, 111 – 118.

Hadisaputra, S.; Purwoko, A. A.; Wajdi, F.; Sumarlan, I.; Hamdiani, S.: Theoretical Study of the Substituent Effect on Corrosion Inhibition Performance of Benzimidazole and its Derivatives. Int. J. Corros 2019, 8, 673–688.

Şahin, M., Gece, G., Karcı, F., and Bilgiç, S. Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. Journal of Applied Electrochemistry 2008, 38, 809–815.

Downloads

Published

2022-05-30

How to Cite

Stiadi, Y., Muhammad Ilham, & Emriadi. (2022). Studi Komputasi Daidzein, Galangin, Genistein, Naringenin sebagai Inhibitor Korosi Besi dengan Metode DFT dan Membandingkannya dengan Luteolin. Jurnal Kimia Unand, 11(1), 12–18. https://doi.org/10.25077/jku.11.1.12-18.2022

Issue

Section

Articles