Sintesis Lapis Empat Fasa Aurivillius Ca1-xBaxBi3,5La0,5Ti4O15 Dengan Metode Lelehan Garam

Authors

  • Zulhadjri Departemen Kimia FMIPA Universitas Andalas
  • Riga Oktry Silpa Departemen Kimia FMIPA Universitas Andalas
  • Rahmayeni Departemen Kimia FMIPA Universitas Andalas
  • Nurul Pratiwi Departemen Kimia FMIPA Universitas Andalas

DOI:

https://doi.org/10.25077/jku.13.1.7-13.2024

Keywords:

Aurivillius phase, dielectric properties, structural analysis, molten salt methods, orthorhombic

Abstract

The four-layer Aurivillius phase Ca1-xBaxBi3.5La0.5Ti4O15 (x = 0.2, 0.4, 0.6, 0.8, and 1) has been synthesized by molten salt method. The effect of varying x on the structure, morphology, and dielectric properties was studied. X-ray diffraction (XRD) and Le Bail refinement revealed that the compounds with the composition x = 0, 0.2, and 0.4 were single-phase product with orthorhombic A21am structure, whereas for higher x value (composition of Ba doped), a Ba2TiO4 impurity is found in products. Changes in unit cell volume were investigated, and the size increased with larger x. The substitution of larger Ba2+ ions resulted in a shorter Ti-O bond, shifting vibration mode to higher wave number that showed in FTIR spectra. SEM images show anisotropic plate-like grain with distributed particle sizes at 1.9 – 3.1μm. The dielectric constant values decrease with increasing x, otherwise the dielectric loss values increase for x = 0 and 0.2, however decrease for x = 0.4. The resulting Aurivillius compound has potential for applications in ferroelectric and piezoelectric devices.

References

Z. Surowiak, D. Bochenek, Multiferroic materials for sensors, transducers and memory devices (review article), Arch. Acoust. 33 (2008) 243–260.

A.Y. Birenbaum, C. Ederer, Potentially multiferroic Aurivillius phase Bi5FeTi3O15: Cation site preference, electric polarization, and magnetic coupling from first principles, Phys. Rev. B - Condens. Matter Mater. Phys. 90 (2014) 1–12. https://doi.org/10.1103/PhysRevB.90.214109.

T.P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G.R. Blake, Zulhadjri, Structure-property relationships in the lanthanide-substituted PbBi2Nb2O9 Aurivillius phase synthesized by the molten salt method, J. Alloys Compd. 860 (2021) 158440. https://doi.org/10.1016/j.jallcom.2020.158440.

N.M. Sammes, G.A. Tompsett, H. Näfe, F. Aldinger, Bismuth based oxide electrolytes - Structure and ionic conductivity, J. Eur. Ceram. Soc. 19 (1999) 1801–1826. https://doi.org/10.1016/S0955-2219(99)00009-6.

D.Y. Suárez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and Tc in Aurivillius compounds, J. Mater. Res. 16 (2001) 3139–3149. https://doi.org/10.1557/JMR.2001.0433.

Z. Zulhadjri, R. Ramadhani, A.A. Billah, S. Arief, E. Emriadi, Sintesis Senyawa Aurivillius Ca1-xBi3,5+xLa0,5Ti4-xMnxO15: Struktur dan Sifat Dielektrik, ALCHEMY J. Penelit. Kim. 14 (2018) 143. https://doi.org/10.20961/alchemy.14.1.14476.143-151.

D. Wu, H. Zhou, L. Li, Y. Chen, Gd/Mn Co-Doped CaBi4Ti4O15 Aurivillius-Phase Ceramics: Structures, Electrical Conduction and Dielectric Relaxation Behaviors, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15175810.

Z. Zulhadjri, A.A. Billah, T.P. Wendari, E. Emriadi, U. Septiani, S. Arief, Synthesis of aurivillius phase CaBi4Ti4O15 doped with bot3+ and Mn3+ cations: Crystal structure and dielectric properties, Mater. Res. 23 (2020) 2–6. https://doi.org/10.1590/1980-5373-MR-2019-0521.

A. Khokhar, P.K. Goyal, O.P. Thakur, A.K. Shukla, K. Sreenivas, Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4-xLaxTi4O15 ceramics, Mater. Chem. Phys. 152 (2015) 13–25. https://doi.org/10.1016/j.matchemphys.2014.11.074.

Zulhadjri, T.P. Wendari, R. Ramadhani, Y.E. Putri, Imelda, La3+ substitution induced structural transformation in CaBi4Ti4O15 Aurivillius phases: Synthesis, morphology, dielectric and optical properties, Ceram. Int. 47 (2021) 23549–23557. https://doi.org/10.1016/j.ceramint.2021.05.072.

N.E. Mealy, M. Bayés, K-111, Drugs Future. 29 (2004) 1161.

B.J. Kennedy, Q. Zhou, Ismunandar, Y. Kubota, K. Kato, Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A=Ca, Sr, Ba, Pb), J. Solid State Chem. 181 (2008) 1377–1386. https://doi.org/10.1016/j.jssc.2008.02.015.

H. Du, X. Shi, H. Li, Phase developments and dielectric responses of barium substituted four-layer CaBi4Ti4O15 aurivillius, Bull. Mater. Sci. 34 (2011) 1201–1207. https://doi.org/10.1007/s12034-011-0236-8.

J. Tellier, P. Boullay, M. Manier, D. Mercurio, A comparative study of the Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15, J. Solid State Chem. 177 (2004) 1829–1837. https://doi.org/10.1016/j.jssc.2004.01.008.

J. Xiao, H. Zhang, Y. Xue, Z. Lu, X. Chen, P. Su, F. Yang, X. Zeng, The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics, Ceram. Int. 41 (2015) 1087–1092. https://doi.org/10.1016/j.ceramint.2014.09.033.

Y.-R. Luo, Comprehensive_Handbook_of_Chemical_Bond_Energies_0849373662.pdf, (2002) 1–1687.

S. Kumar, K.B.R. Varma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics, J. Phys. D. Appl. Phys. 42 (2009). https://doi.org/10.1088/0022-3727/42/7/075405.

Downloads

Published

2024-05-30

How to Cite

Zulhadjri, Silpa , R. O., Rahmayeni, & Pratiwi, N. (2024). Sintesis Lapis Empat Fasa Aurivillius Ca1-xBaxBi3,5La0,5Ti4O15 Dengan Metode Lelehan Garam . Jurnal Kimia Unand, 13(1), 7–13. https://doi.org/10.25077/jku.13.1.7-13.2024

Issue

Section

Articles