Degradation of Remazol Yellow FG by Sonolysis and Photolysis with TiO2/Active Carbon Rice Husk (TiO2/AC) Catalyst and Analysis Using Spectrophotometer UV-Vis

Authors

  • Safni Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Anggi Nabila Putri Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Deswati Deswati Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Zilfa Zilfa Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas

Keywords:

Remazol Yellow FG , Degradation , Sonolysis , Photolysis , TiO2/AC

Abstract

Remazol Yellow FG is one of the dyes that are often used in the textile industry because it is accessible and reasonably priced. The non-biodegradable dyes produce waste and inhibit sunlight from passing through the water. In this study, we performed Fourier Transform Infrared (FTIR) to characterise the activated carbon of rice husk and TiO2/activated carbon rice husk (TiO2/AC) using Diffuse Reflectance Spectroscopy UV-Vis (DRS UV-Vis). Remazol Yellow FG was degraded by using sonolysis and photolysis under UV ray (λ = 254 and 365 nm) and visible ray. We performed the experiments using a variety of variables which consist of catalyst dosage (10–50 mg), contact time (1–6 hours), catalyst type (AC, TiO2 and TiO2/AC), lamp type (365 nm, 254 nm and visible lamp) and initial Remazol Yellow FG concentration (10–30 mg/L) to determine the degradation percentage. We found that the addition of TiO2/AC catalyst increased the degradation percentage of Remazol Yellow FG from 6,86% to 52,62% using sonolysis and 8,34% to 95,02% using photolysis. Hence, we concluded that TiO2/AC catalyst from rice husk could be an effective catalyst for the Remazol Yellow FG degradation.

References

Chequer, F.M.D., Dorta, D.J., Oliveira, D.P. (2011). Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks? In: Hauser, P.J. (ed) Advances in Treating Textile Effluent. Rijeka: InTech, pp. 27–48.

Mcyotto, F., Wei, Q., Macharia, D.K., Huang, M., Shen, C., Chow, C.W.K. (2021). Effect of dye structure on colour removal efficiency by coagulation. Chemical Engineering Journal, 405, 1–13. DOI: 10.1016/j.cej.2020.126674.

Wekoye, J.N., Wanyonyi, W.C., Wangila, P.T., Tonui, M.K. (2020). Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24–31. DOI: 10.1016/j.enceco.2020.01.004.

Hashim, K.S., Al-Saati, N.H., Alquzweeni, S.S., Zubaidi, S.L., Kot, P., Kraidi, L., Hussein, A.H., Alkhaddar, R., Shaw, A., Alwash, R. (2019). Decolourization of dye solutions by electrocoagulation: An investigation of the effect of operational parameters. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, pp. 1–8.DOI: 10.1088/1757-899X/584/1/012024.

Nadeem, K., Guyer, G.T., Keskinler, B., Dizge, N. (2019). Investigation of segregated wastewater streams reusability with membrane process for textile industry. Journal of Cleaner Production, 228, 1437–1445. DOI: 10.1016/j.jclepro.2019.04.205.

M. A Rauf, M.A Meetani, S. Hisaindee (2011). An Overview on The Photocatalytic of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination, 276, 13–27. DOI: 10.1016/j.desal.2011.03.071.

Aziztyana, A.P., Wardhani, S., Prananto, Y.P., Purwonugroho, D., Darjito (2019). Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, pp. 1–8.DOI: 10.1088/1757-899X/546/4/042047.

Zayed, M., Samy, S., Shaban, M., Altowyan, A.S., Hamdy, H., Ahmed, A.M. (2022). Fabrication of TiO2/NiO p-n Nanocomposite for Enhancement Dye Photodegradation under Solar Radiation. Nanomaterials, 12(6), 1–22. DOI: 10.3390/nano12060989.

Putri, R.A., Safni, S., Jamarun, N., Septiani, U., Kim, M.K., Zoh, K.D. (2020). Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst. Environmental Engineering Research, 25(4), 529–535. DOI: 10.4491/eer.2019.196.

Khan, S.A., Khan, S.B., Khan, L.U., Farooq, A., Akhtar, K., Asiri, A.M. (2018). Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. In: Handbook of Materials Characterization. Springer International Publishing, pp. 317–344.DOI: 10.1007/978-3-319-92955-2_9.

Chen, K., Li, J., Li, J., Zhang, Y., Wang, W. (2010). Synthesis and characterization of TiO2-montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV-vis irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 360(1–3), 47–56. DOI: 10.1016/j.colsurfa.2010.02.005.

Haber’, J., Block, J.H., Delmon B. (1995). Manual of Methods and Procedures for Catalyst Characterization

Di Valentin, C., Pacchioni, G., Selloni, A. (2005). Theory of carbon doping of titanium dioxide. Chemistry of Materials, 17(26), 6656–6665. DOI: 10.1021/cm051921h.

Kiwaan, H.A., Atwee, T.M., Azab, E.A., El-Bindary, A.A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200 DOI: 10.1016/j.molstruc.2019.127115.

Kong, C.P.Y., Suhaimi, N.A.A., Shahri, N.N.M., Lim, J.W., Nur, M., Hobley, J., Usman, A. (2022). Auramine O UV Photocatalytic Degradation on TiO2 Nanoparticles in a Heterogeneous Aqueous Solution. Catalysts, 12(9) DOI: 10.3390/catal12090975.

Mahendran, V., Gogate, P.R. (2021). Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide. Separation and Purification Technology, 274 DOI: 10.1016/j.seppur.2021.119011.

Agarwal, S., Tyagi, I., Gupta, V.K., Dehghani, M.H., Bagheri, A., Yetilmezsoy, K., Amrane, A., Heibati, B., Rodriguez-Couto, S. (2016). Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. Journal of Molecular Liquids, 221, 1237–1242. DOI: 10.1016/j.molliq.2016.04.076.

Abdullah, A.Z., Ling, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. Journal of Hazardous Materials, 173(1–3), 159–167. DOI: 10.1016/j.jhazmat.2009.08.060.

Khataee, A., Honarnezhad, R., Fathinia, M. (2018). Degradation of sodium isopropyl xanthate from aqueous solution using sonocatalytic process in the presence of chalcocite nanoparticles: Insights into the degradation mechanism and phyto-toxicity impacts. Journal of Environmental Management, 211, 225–237. DOI: 10.1016/j.jenvman.2018.01.054.

Abdurahman, M.H., Abdullah, A.Z., Shoparwe, N.F. (2021). A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chemical Engineering Journal, 413 DOI: 10.1016/j.cej.2020.127412.

Bandara, J., Nadtochenko, V., Kiwi, J., Pulgarin, C. (1997). Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies. In: Water Science and Technology. pp. 87–93.DOI: 10.1016/S0273-1223(97)00013-9.

Konstantinou, I.K., Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. DOI: 10.1016/j.apcatb.2003.11.010.

Shi, X., Zhang, X., Ma, L., Xiang, C., Li, L. (2019). TiO2-doped chitosan microspheres supported on cellulose acetate fibers for adsorption and photocatalytic degradation of methyl orange. Polymers, 11(8) DOI: 10.3390/polym11081293.

Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A. v., Reddy, C.V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 45(13), 7764–7778. DOI: 10.1016/j.ijhydene.2019.07.241.

Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.A.C.M. (2002). Photocatalytic degradation for environmental applications - A review. Journal of Chemical Technology and Biotechnology 77:102–116.

Nguyen, V.H., Lin, S.D., Wu, J.C.S., Bai, H. (2014). Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst. Beilstein Journal of Nanotechnology, 5(1), 566–576. DOI: 10.3762/bjnano.5.67.

Lee, S.Y., Kang, D., Jeong, S., Do, H.T., Kim, J.H. (2020). Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega, 5(8), 4233–4241. DOI: 10.1021/acsomega.9b04127.

Akyol, A., Bayramoǧlu, M. (2005). Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. Journal of Hazardous Materials, 124(1–3), 241–246. DOI: 10.1016/j.jhazmat.2005.05.006.

Echabbi, F., Hamlich, M., Harkati, S., Jouali, A., Tahiri, S., Lazar, S., Lakhmiri, R., Safi, M. (2019). Photocatalytic degradation of methylene blue by the use of titanium-doped calcined mussel shells CMS/TiO2. Journal of Environmental Chemical Engineering, 7(5) DOI: 10.1016/j.jece.2019.103293.

Hoang, N.T.-T., Tran, A.T.-K., Le, T.-A., Nguyen, D.D. (2021). Enhancing efficiency and photocatalytic activity of TiO2-SiO2 by combination of glycerol for MO degradation in continuous reactor under solar irradiation. Journal of Environmental Chemical Engineering, 9(5), 1–7. DOI: 10.1016/j.jece.2021.105789.

Magdalane, C.M., Priyadharsini, G.M.A., Kaviyarasu, K., Jothi, A.I., Simiyon, G.G. (2021). Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of congo red degradation dye. Surfaces and Interfaces, 25 DOI: 10.1016/j.surfin.2021.101296.

Downloads

Published

2024-11-30

How to Cite

Safni, Putri, A. N., Deswati, D., & Zilfa, Z. (2024). Degradation of Remazol Yellow FG by Sonolysis and Photolysis with TiO2/Active Carbon Rice Husk (TiO2/AC) Catalyst and Analysis Using Spectrophotometer UV-Vis. Jurnal Kimia Unand, 13(2), 34–40. Retrieved from http://jku.fmipa.unand.ac.id/index.php/jku/article/view/65